Quantum Entropy

This post follows on from my previous one, Systemic Behaviour of Matter Particles, which was based on a hypothesis that describes physical reality in terms of the behaviour of the fabric of space and the interaction of its constituents. It defines the fabric of space as a medium of oscillating spherical and massless elements that give rise to matter particles as dynamics structures in spin motion, and it defines energy as the motion of those elements. Thus, a stable matter particles maintains spin and a quantum field around itself in the form of elements of space rotating around it in the direction of spin. In this post, I shall continue to explore those particles as thermodynamic systems and investigate their compliance with the laws of thermodynamics. Continue reading “Quantum Entropy”


Systemic Behaviour of Matter Particles

This post is based on a hypothesis which describes physical reality in terms of the behaviour of the fabric of space and the interaction of its constituents. It is the subject of a book titled ‘Physical Reality – the fabric of space’. The hypothesis defines the fabric of space as a physical medium of discrete spherical elements permeating all space, and oscillating at an invariable period of Planck time. The diameter of an elements is the Planck length. As such, their frequency is constant and their amplitude of oscillation is independent of their frequency, and reflects temperature. The hypothesis defines energy as the motion of the elements of the fabric of space, be it oscillatory or curvilinear, and it defines matter particles as dynamic structures that form from those elements. Thus, quantum fields reflect the behaviour of the elements of the fabric of space in the immediate surroundings of the particles, which result from their interaction with the fabric of space. The hypothesis defines all other properties of matter particles, including electric charge and quantum spin number in terms of the mechanics of the elements of space forming the particles. However, it defines mass as the exposed background vacuum.

Considering individual matter particles as thermodynamics systems may seem a farfetched idea. The main reason is that the structure of subatomic particles has remained ambiguous and detached from the fabric of space with which it interacts. Based on the proposed hypothesis, it will become clear that subatomic particles are essentially systems the inner working of which is governed by the laws of thermodynamics. However, before I appeal to the laws of thermodynamics to define matter particles as thermodynamic systems, it is appropriate to define what is meant by a system and outline the different types of thermodynamic systems. Continue reading “Systemic Behaviour of Matter Particles”

Why does E/m = c^2?

Einstein’s famous equation E = mc^2 encapsulates the relationship between mass and energy. However, explaining the appearance of the square of the speed of light as a constant of proportionality proved to be an insurmountable challenge for physicists. They could only point out the colossal energy contained in a small amount of mass, which is immediately obvious from the magnitude of the speed of light. But, why the speed of light? What is its significance in the relationship? And why squared?
These and many other questions in physics remain unanswered, because the source of physical reality and the effect it has on all physical phenomena have been totally discarded. Therefore, phenomena such as matter, mass, energy, electric charge, light, gravity, time, etc., treated as independent quantities that arise out of nothing!

In this post, I shall reveal the reason behind the appearance of the speed of light [c], in Einstein’s equation and explain why it has to be squared. This, I shall do with reference to the fabric of space and the nature of matter and energy as quantities derived from that fabric. And in order to save the reader going over previous posts for the relevant information, I shall begin by defining those parameter. However, for the sake of brevity, I shall not explain why those definitions hold true. Continue reading “Why does E/m = c^2?”

Modelling Supernovae & Black Holes!

Given the existence of a space fabric as a fluid medium with which matter interacts, it is possible to physically model many physical phenomena at both quantum and galactic levels. Discarding the existence and effect of such a medium is the main reason behind the irreconcilability of some theories and inexplicable behaviour of objects at both quantum and galactic levels.

To develop a conceptual model of a system, the conscious mind begins by linking simple concepts to form mathematical relations. For example, by realizing that the flow rate from a water tap depends on the number of tap turns, a mathematical model is developed. It is then possible to relate the volume of water collected to the duration it takes to collected it, for a given number of tap turns. Relating a system’s variables to each other correctly is all that is needed to develop a mathematical model. This simple water-tap example could be extended to predict the flow rate of water through any pipe. To do that, the model must include all relevant parameters that affect water flow, which include pressure head, pipe diameter, length, and surface roughness. Continue reading “Modelling Supernovae & Black Holes!”

π in the sky!

In this post I shall discuss the nature of π as a mathematical constant and reveal its relationship with the fabric of space. As an irrational number π represents the ratio of a circle’s circumference to its diameter. An irrational number is a real number that cannot be expressed as a ratio (a/b), where (a) and (b) are integers and (b≠0).

Returning briefly to the cubical universe, which we considered in a previous post, if the observer there begins to probe his world at the level of the individual cubes defining his space and decides to form different geometries at that level, he could do so only by using those cubes. He would have no other means. Using cubes to define circles, he would soon discover that the geometric properties of his circles vary according to the orientation of the cubes. For example, the number of elements defining the diameter of the same circle could vary depending upon the orientation of the cubes in the circumference. Therefore, in a universe defined by cubical elements π, as the ratio of the units of length of a circle’s circumference to that of its diameter, cannot be constant. Continue reading “π in the sky!”

Complex Numbers Unravelled

In mathematics and in physics, complex numbers are considered mysterious. Although they are essential to solving fundamental problems in science and engineering, their true relationship with the physical world remains ambiguous. For example, why do they have two components, which are referred to as real and imaginary parts? Why is the imaginary part closely linked to the square root of minus one? And most importantly, what is their relationship with physical reality. This post answers those questions.

In this post, I shall unravel one of the mysteries of mathematics, that is the mystery of complex numbers. In future posts, I shall unravel other mysteries with reference to the basic elements of physical reality. They include infinity and irrational numbers of which (π) is considered most mysterious. Continue reading “Complex Numbers Unravelled”

My Take On Physical Reality: A Quantum Perspective

Out there, beyond the bounds of consciousness, one imagines the existence of a colourful world of sounds, smells, tastes and textures. However, nothing like that exists except in the mind. In reality, what exists is a heaving world of particles that have no colour, make no sound, produce no odour, possess no taste or sensation. That includes the apparently empty outer space.


In processing a continuum of signals from the surroundings, and from within our bodies, our brains give us a sense of continuity of existence in space and in time. However, that continuity is false. At some level, below the level of atoms and molecules, that continuity breaks down revealing the reality of the world as bits. At such a level, reality becomes individual elements of space and time. Each such element defines the smallest possible location in space and its oscillation defines the shortest possible time epoch. The smallest dimension of such a space is referred to in physics as the Planck length and the time it takes it to oscillate is referred to as the Planck time. Continue reading “My Take On Physical Reality: A Quantum Perspective”