About this book!

The book presents a novel view on physical reality, which focuses on the fabric of space as the source of that reality. It encapsulates all major theories in physics in a single framework of logic. Those theories include general relativity, quantum theory, string theory and loop quantum gravity. It does so by introducing a hypothesis, which quantises the fabric of space and defines its quanta as massless elementary particles that give rise to matter, energy and time. The pinnacle of success of the hypothesis is its logical explanation of the structure and workings of the atom and the arrangement of subatomic particles in atoms of different chemical elements. Continue reading “About this book!”

Advertisements

G is for Gravity

As the title implies, this post is about gravity. It is not so much about the force of gravity, but gravity as an acceleration field having a constant parameter referred to as the gravitational constant, denoted G, which is otherwise known as Newton’s gravitational constant. This constant appears in Newton’s gravitational law and in Einstein’s theory of general relativity. Though it features in both Newtonian & Einsteinian definitions of gravity, its physical significance remains ambiguous.

In this post, I shall reveal its physical significance in simple language and very little mathematics, but in accordance with the definition of the atom, which I covered in my post Anatomy of Atoms and which is based on the UP hypothesis.

In Newtonian physics gravity is defined as radial acceleration produces by an object towards its centre of mass. Therefore, any object that has mass has a gravitational field. Based on this definition, any material object entering the gravitational field of another is immediately attracted to it and attracts it. The question of what constitutes a physical field and causes matter to accelerate has never been answered satisfactorily and therefor the nature of gravity has remained ambiguous! Continue reading “G is for Gravity”

Mass Types & The Ultraviolet Catastrophe

In this post, I identify and discuss the different types of mass that must exist in particles and in quantum fields. The post is based on The UP Hypothesis, which I introduced in a previous post and its follow-up, Quantum Gyroscopes. In those posts, I defined various phenomenon in line with that hypothesis and explained how stable matter particles and their quantum fields form from elements of the fabric of space, which are referred to as Universal Particles (UPs). Therefore, understanding the contents of the two previous posts is essential to understanding this one.

In quantum field theories, particles are considered to arise from their quantum fields as field quanta. For example, the photon is considered the quanta of the electromagnetic field. In effect, a particle represents a localized effect in its quantum field, which is described in some gauge theories as a perturbation. This description does not apply to particles mediating the strong force, because the theory could not be extended to them. The reason, according to the UP hypothesis, is that those particles are almost detached from the surrounding medium and behave as independent structures, though they interact with the fabric of space to produce quantum fields. Continue reading “Mass Types & The Ultraviolet Catastrophe”

The UP Hypothesis

In this post, I outline a hypothesis which describes physical reality in terms of the behaviour of the fabric of space and the interaction of its constituents. It is not a theory that attempts to model a specific phenomenon or replace an existing theory. It is a hypothesis that gives physical significance to all existing theories in physics and in mathematics.

In physics, it rationalises phenomena such as matter, energy, mass, forces, electric charge, quantum field, quantum spin, etc. and defines them in independent physical terms. As such, it reveals the reason behind the apparent conflict between classical and quantum mechanics and explains in full details the workings of the atom as a coherent physical system. Consequently, it introduces a conceptual relationship between mass and energy and removes all myths from quantum theory. In full agreement with all major theories, the hypothesis explains the need for the extra dimensions demanded by string theory.

In mathematics, the hypothesis exposes a link between physical phenomena and their mathematical models and eliminates wrong assumptions held as axioms on which geometric modelling is based. Thus, it explains the reality behind irrational and complex numbers and reveals the power and limitation of mathematics as an input language for information processing systems, including the human brain.

The hypothesis is simple enough for anyone to understand. However, its implications for explaining physical reality are far reaching. With good understanding of mechanics, the hypothesis can be used to explain all physical phenomena from the smallest of subatomic particles to the largest of galactic clusters. In fact, the existence of all such phenomena is demanded by the hypothesis.

The hypothesis states: Continue reading “The UP Hypothesis”

Gravity and the standard model

The UP hypothesis, which is the subject of my book ‘Physical Reality – the fabric of space’, describes physical reality in terms of the behaviour of the fabric of space and the interaction of its constituents. The hypothesis defines the fabric of space as a medium of oscillating spherical and massless elements that give rise to matter particles as localized dynamic structures, with mass being the background vacuum exposed by the dynamics of the elements forming the particles. It defines energy as the motion of those elements relative to the observer and identifies two types of motions induced by matter particles in the surrounding medium— one is oscillatory and the other is uniform angular motion. Whilst we distinguish the former as thermal energy, the latter represents quantum fields rotating around the particles that induce them. Other types of motion of the elements are possible, but they are not produced by individual matter particles. Rather, they are the result of the action of systems of forces.

Quantum fields are generated by the spin of the source particles, which is essentially the rotation of the structure formed by the elements of the fabric of space. The quantum field of a particle decrease in intensity with increased radial distance. When particles condense to form an object, their quantum fields merge producing much stronger field around the entire object, hence the relationship between mass and quantum field intensity. Like that of a particle, the speed of rotation, hence the observed magnitude of such a field drops with increased distance from the object. Consequently, an object crossing it experiences acceleration as it nears the source object, hence the concept of warping of space-time and acceleration due to gravity. Continue reading “Gravity and the standard model”