Mass Types & The Ultraviolet Catastrophe

In this post, I identify and discuss the different types of mass that must exist in particles and in quantum fields. The post is based on The UP Hypothesis, which I introduced in a previous post and its follow-up, Quantum Gyroscopes. In those posts, I defined various phenomenon in line with that hypothesis and explained how stable matter particles and their quantum fields form from elements of the fabric of space, which are referred to as Universal Particles (UPs). Therefore, understanding the contents of the two previous posts is essential to understanding this one.

In quantum field theories, particles are considered to arise from their quantum fields as field quanta. For example, the photon is considered the quanta of the electromagnetic field. In effect, a particle represents a localized effect in its quantum field, which is described in some gauge theories as a perturbation. This description does not apply to particles mediating the strong force, because the theory could not be extended to them. The reason, according to the UP hypothesis, is that those particles are almost detached from the surrounding medium and behave as independent structures, though they interact with the fabric of space to produce quantum fields. Continue reading “Mass Types & The Ultraviolet Catastrophe”


The UP Hypothesis

In this post, I outline a hypothesis which describes physical reality in terms of the behaviour of the fabric of space and the interaction of its constituents. It is not a theory that attempts to model a specific phenomenon or replace an existing theory. It is a hypothesis that gives physical significance to all existing theories in physics and in mathematics.

In physics, it rationalises phenomena such as matter, energy, mass, forces, electric charge, quantum field, quantum spin, etc. and defines them in independent physical terms. As such, it reveals the reason behind the apparent conflict between classical and quantum mechanics and explains in full details the workings of the atom as a coherent physical system. Consequently, it introduces a conceptual relationship between mass and energy and removes all myths from quantum theory. In full agreement with all major theories, the hypothesis explains the need for the extra dimensions demanded by string theory.

In mathematics, the hypothesis exposes a link between physical phenomena and their mathematical models and eliminates wrong assumptions held as axioms on which geometric modelling is based. Thus, it explains the reality behind irrational and complex numbers and reveals the power and limitation of mathematics as an input language for information processing systems, including the human brain.

The hypothesis is simple enough for anyone to understand. However, its implications for explaining physical reality are far reaching. With good understanding of mechanics, the hypothesis can be used to explain all physical phenomena from the smallest of subatomic particles to the largest of galactic clusters. In fact, the existence of all such phenomena is demanded by the hypothesis.

The hypothesis states: Continue reading “The UP Hypothesis”

Gravity and the standard model

The UP hypothesis, which is the subject of my book ‘Physical Reality – the fabric of space’, describes physical reality in terms of the behaviour of the fabric of space and the interaction of its constituents. The hypothesis defines the fabric of space as a medium of oscillating spherical and massless elements that give rise to matter particles as localized dynamic structures, with mass being the background vacuum exposed by the dynamics of the elements forming the particles. It defines energy as the motion of those elements relative to the observer and identifies two types of motions induced by matter particles in the surrounding medium— one is oscillatory and the other is uniform angular motion. Whilst we distinguish the former as thermal energy, the latter represents quantum fields rotating around the particles that induce them. Other types of motion of the elements are possible, but they are not produced by individual matter particles. Rather, they are the result of the action of systems of forces.

Quantum fields are generated by the spin of the source particles, which is essentially the rotation of the structure formed by the elements of the fabric of space. The quantum field of a particle decrease in intensity with increased radial distance. When particles condense to form an object, their quantum fields merge producing much stronger field around the entire object, hence the relationship between mass and quantum field intensity. Like that of a particle, the speed of rotation, hence the observed magnitude of such a field drops with increased distance from the object. Consequently, an object crossing it experiences acceleration as it nears the source object, hence the concept of warping of space-time and acceleration due to gravity. Continue reading “Gravity and the standard model”

Quantum Entropy

This post follows on from my previous one, Systemic Behaviour of Matter Particles, which was based on a hypothesis that describes physical reality in terms of the behaviour of the fabric of space and the interaction of its constituents. It defines the fabric of space as a medium of oscillating spherical and massless elements that give rise to matter particles as dynamics structures in spin motion, and it defines energy as the motion of those elements. Thus, a stable matter particles maintains spin and a quantum field around itself in the form of elements of space rotating around it in the direction of spin. In this post, I shall continue to explore those particles as thermodynamic systems and investigate their compliance with the laws of thermodynamics. Continue reading “Quantum Entropy”

Why does E/m = c^2?

Einstein’s famous equation E = mc^2 encapsulates the relationship between mass and energy. However, explaining the appearance of the square of the speed of light as a constant of proportionality proved to be an insurmountable challenge for physicists. They could only point out the colossal energy contained in a small amount of mass, which is immediately obvious from the magnitude of the speed of light. But, why the speed of light? What is its significance in the relationship? And why squared?
These and many other questions in physics remain unanswered, because the source of physical reality and the effect it has on all physical phenomena have been totally discarded. Therefore, phenomena such as matter, mass, energy, electric charge, light, gravity, time, etc., treated as independent quantities that arise out of nothing!

In this post, I shall reveal the reason behind the appearance of the speed of light [c], in Einstein’s equation and explain why it has to be squared. This, I shall do with reference to the fabric of space and the nature of matter and energy as quantities derived from that fabric. And in order to save the reader going over previous posts for the relevant information, I shall begin by defining those parameter. However, for the sake of brevity, I shall not explain why those definitions hold true. Continue reading “Why does E/m = c^2?”

My Take On Physical Reality: A Quantum Perspective

Out there, beyond the bounds of consciousness, one imagines the existence of a colourful world of sounds, smells, tastes and textures. However, nothing like that exists except in the mind. In reality, what exists is a heaving world of particles that have no colour, make no sound, produce no odour, possess no taste or sensation. That includes the apparently empty outer space.


In processing a continuum of signals from the surroundings, and from within our bodies, our brains give us a sense of continuity of existence in space and in time. However, that continuity is false. At some level, below the level of atoms and molecules, that continuity breaks down revealing the reality of the world as bits. At such a level, reality becomes individual elements of space and time. Each such element defines the smallest possible location in space and its oscillation defines the shortest possible time epoch. The smallest dimension of such a space is referred to in physics as the Planck length and the time it takes it to oscillate is referred to as the Planck time. Continue reading “My Take On Physical Reality: A Quantum Perspective”