Calabi—Yau manifolds & the M-theory

This post follows on from the UP hypothesis.

String theory encompasses a group of models, which advocate the concept of elementary particles as vibrating strings. In some instances, space is regarded as a fabric of woven strings, which when torn at some quantum locality, it exposes the background vacuum that represents the mass of a newly formed particle. In other instances, the theory proposes that a particle develops mass as a vibrating string, so that its mass is the exposed background vacuum maintained by its level of oscillation, which reflect its energy level. Therefore, the greater the level of oscillation, the greater the mass. Thus, energy is defined as string vibration. Strings could be open-ended or closed loops. Continue reading “Calabi—Yau manifolds & the M-theory”

Advertisements

Quantum Entropy

This post follows on from my previous one, Systemic Behaviour of Matter Particles, which was based on a hypothesis that describes physical reality in terms of the behaviour of the fabric of space and the interaction of its constituents. It defines the fabric of space as a medium of oscillating spherical and massless elements that give rise to matter particles as dynamics structures in spin motion, and it defines energy as the motion of those elements. Thus, a stable matter particles maintains spin and a quantum field around itself in the form of elements of space rotating around it in the direction of spin. In this post, I shall continue to explore those particles as thermodynamic systems and investigate their compliance with the laws of thermodynamics. Continue reading “Quantum Entropy”