Gravity and the standard model

The UP hypothesis, which is the subject of my book ‘Physical Reality – the fabric of space’, describes physical reality in terms of the behaviour of the fabric of space and the interaction of its constituents. The hypothesis defines the fabric of space as a medium of oscillating spherical and massless elements that give rise to matter particles as localized dynamic structures, with mass being the background vacuum exposed by the dynamics of the elements forming the particles. It defines energy as the motion of those elements relative to the observer and identifies two types of motions induced by matter particles in the surrounding medium— one is oscillatory and the other is uniform angular motion. Whilst we distinguish the former as thermal energy, the latter represents quantum fields rotating around the particles that induce them. Other types of motion of the elements are possible, but they are not produced by individual matter particles. Rather, they are the result of the action of systems of forces.

Quantum fields are generated by the spin of the source particles, which is essentially the rotation of the structure formed by the elements of the fabric of space. The quantum field of a particle decrease in intensity with increased radial distance. When particles condense to form an object, their quantum fields merge producing much stronger field around the entire object, hence the relationship between mass and quantum field intensity. Like that of a particle, the speed of rotation, hence the observed magnitude of such a field drops with increased distance from the object. Consequently, an object crossing it experiences acceleration as it nears the source object, hence the concept of warping of space-time and acceleration due to gravity.

It is worth noting that whilst gravity is experienced as a result of crossing the quantum field, in this case considered a gravitational field, the other quantum forces, namely the nuclear, the electromagnetic and the weak forces are much stronger than gravity because they emanate from the negative pressure of exposed background vacuum (mass). Given the hypothesis’ definitions of the fabric of space, matter particles, mass and energy, it is easy to envisage the consequences of particle collisions in high-energy accelerators. Since any volume of background vacuum exposed through the fabric of space is essentially mass, any such volume must be considered a particle of some sort.

Consider the example of air bubbles in a liquid medium, say water, to give analogy to the situation of subatomic particle collisions. If the bubbles are forced to collide at some speed the outcome could be that they breakup into several small bubbles or they could form one large bubble or one might cross the other and they remain the same. The outcome depends upon the speed of collision, which reflects the energy level. However, where this example differs from the reality of the world of subatomic particles is that mass, as a void in the fabric of space, is under negative pressure. As such, it requires stable structure to maintain it. If that structure collapses the particles decay, appearing ultimately as an increased amplitude of oscillation of the surrounding elements of space— i.e., they appear as energy.

Based on this interpretation of the reality of matter, mass and energy, one can appreciate the endless range of particles that might appear in particle collisions as a result of varying collision energies. Therefore, those particles cannot be elementary entities that somehow come together to form larger subatomic particles. They are the broken parts of otherwise stable elementary subatomic particles. They are the divided or merged masses of the original particles, like the air bubbles that breakup or merge in collision.

Therefore, as particle collisions reach higher and higher energies more and more particles will appear. However, except for the four stable particles, namely, the proton and its antiparticle and the electron and its antiparticle, none of the other particles, not even the neutron can remain stable outside the atom. In fact, the case of the neutron is that its structure can remain stable only inside the atom because of the action of the protons either side of it. Unfortunately, details of the structural configuration of subatomic particles, atoms and molecules are beyond the scope of the post, but will be the subject of future posts.

Clearly, the difference between the two types of particles in the standard model, known as force carries (bosons) and matter particles (fermions), is that the former particles have simple structure that maintains their mass, and as such they collapse on encountering matter particles. In the process, they cause the collapse or partial collapse (decay) of matter particles. Bosons are also referred to as carriers of the weak force. In contrast, carrier of the nuclear or strong force, namely the gluon is protected by stable structure in the atomic nucleus and as such it is much hard to collapse. Photons, which are considered carriers of the electromagnetic force, have no structure whatever. They are effectively three-dimensional solitons which transfer their momentum to the objects on which they collapse, they then rebound and continue to move on at the same constant speed, namely the speed of light!

Modelling Supernovae & Black Holes!

Given the existence of a space fabric as a fluid medium with which matter interacts, it is possible to physically model many physical phenomena at both quantum and galactic levels. Discarding the existence and effect of such a medium is the main reason behind the irreconcilability of some theories and inexplicable behaviour of objects at both quantum and galactic levels.

To develop a conceptual model of a system, the conscious mind begins by linking simple concepts to form mathematical relations. For example, by realizing that the flow rate from a water tap depends on the number of tap turns, a mathematical model is developed. It is then possible to relate the volume of water collected to the duration it takes to collected it, for a given number of tap turns. Relating a system’s variables to each other correctly is all that is needed to develop a mathematical model. This simple water-tap example could be extended to predict the flow rate of water through any pipe. To do that, the model must include all relevant parameters that affect water flow, which include pressure head, pipe diameter, length, and surface roughness. Continue reading “Modelling Supernovae & Black Holes!”

π in the sky!

In this post I shall discuss the nature of π as a mathematical constant and reveal its relationship with the fabric of space. As an irrational number π represents the ratio of a circle’s circumference to its diameter. An irrational number is a real number that cannot be expressed as a ratio (a/b), where (a) and (b) are integers and (b≠0).

Returning briefly to the cubical universe, which we considered in a previous post, if the observer there begins to probe his world at the level of the individual cubes defining his space and decides to form different geometries at that level, he could do so only by using those cubes. He would have no other means. Using cubes to define circles, he would soon discover that the geometric properties of his circles vary according to the orientation of the cubes. For example, the number of elements defining the diameter of the same circle could vary depending upon the orientation of the cubes in the circumference. Therefore, in a universe defined by cubical elements π, as the ratio of the units of length of a circle’s circumference to that of its diameter, cannot be constant. Continue reading “π in the sky!”

My Take On Physical Reality: A Quantum Perspective

Out there, beyond the bounds of consciousness, one imagines the existence of a colourful world of sounds, smells, tastes and textures. However, nothing like that exists except in the mind. In reality, what exists is a heaving world of particles that have no colour, make no sound, produce no odour, possess no taste or sensation. That includes the apparently empty outer space.


In processing a continuum of signals from the surroundings, and from within our bodies, our brains give us a sense of continuity of existence in space and in time. However, that continuity is false. At some level, below the level of atoms and molecules, that continuity breaks down revealing the reality of the world as bits. At such a level, reality becomes individual elements of space and time. Each such element defines the smallest possible location in space and its oscillation defines the shortest possible time epoch. The smallest dimension of such a space is referred to in physics as the Planck length and the time it takes it to oscillate is referred to as the Planck time. Continue reading “My Take On Physical Reality: A Quantum Perspective”

Physical Reality: the fabric of space

Welcome to my blog ‘Physical Reality’ and to my first post!

proton_1As a design engineer who is extremely curious about how the universe works, I spent a few years conceptualising a model of a universe that would appear like our universe. Having decided on the likely raw material, I spent seven years (2007 – 2014), developing a hypothesis to explain how that material would develop into a fully functioning self-supporting universe. Now, I have reached a level of confidence, which enables me to transpose details of the workings of that model to our physical reality and interpret all physical phenomenon in light of that hypothesis.

We perceive physical reality as having four facets, namely, space, matter, energy and time. Nothing physical can exist beyond those facets. However, our understanding of their nature is severely handicapped by the way the human brain works and how it modulates the signals detected by the senses. We rely on our brains to identify and interact with our surroundings. Our brains receive and process signals captured by our senses. However, those signals do not necessarily convey the entire picture of what is taking place in those surroundings, because the range of signals that our senses can capture is extremely limited. Furthermore, not all that exists in the surroundings produce signals! At times we have to rely on inference in order to understand what is taking place.

In addition to the limited range of signals it can receive and process, the brain has its own limitations, which include restricted filtering of interference, limited speed of signal processing, processing logic limitation, etc. This picture of dependency on limited signal processing leaves little wonder as to the confusion around our understanding of the nature of physical reality at all levels.

In the book ‘Physical Reality: the fabric of space’, I unravel the mysteries of quantum mechanics and unveil the myths associated with maths by explaining its relationship with the physical world.