Mass Types & The Ultraviolet Catastrophe

In this post, I identify and discuss the different types of mass that must exist in particles and in quantum fields. The post is based on The UP Hypothesis, which I introduced in a previous post and its follow-up, Quantum Gyroscopes. In those posts, I defined various phenomenon in line with that hypothesis and explained how stable matter particles and their quantum fields form from elements of the fabric of space, which are referred to as Universal Particles (UPs). Therefore, understanding the contents of the two previous posts is essential to understanding this one.

In quantum field theories, particles are considered to arise from their quantum fields as field quanta. For example, the photon is considered the quanta of the electromagnetic field. In effect, a particle represents a localized effect in its quantum field, which is described in some gauge theories as a perturbation. This description does not apply to particles mediating the strong force, because the theory could not be extended to them. The reason, according to the UP hypothesis, is that those particles are almost detached from the surrounding medium and behave as independent structures, though they interact with the fabric of space to produce quantum fields. Continue reading “Mass Types & The Ultraviolet Catastrophe”

Advertisements

Gravity and the standard model

The UP hypothesis, which is the subject of my book ‘Physical Reality – the fabric of space’, describes physical reality in terms of the behaviour of the fabric of space and the interaction of its constituents. The hypothesis defines the fabric of space as a medium of oscillating spherical and massless elements that give rise to matter particles as localized dynamic structures, with mass being the background vacuum exposed by the dynamics of the elements forming the particles. It defines energy as the motion of those elements relative to the observer and identifies two types of motions induced by matter particles in the surrounding medium— one is oscillatory and the other is uniform angular motion. Whilst we distinguish the former as thermal energy, the latter represents quantum fields rotating around the particles that induce them. Other types of motion of the elements are possible, but they are not produced by individual matter particles. Rather, they are the result of the action of systems of forces.

Quantum fields are generated by the spin of the source particles, which is essentially the rotation of the structure formed by the elements of the fabric of space. The quantum field of a particle decrease in intensity with increased radial distance. When particles condense to form an object, their quantum fields merge producing much stronger field around the entire object, hence the relationship between mass and quantum field intensity. Like that of a particle, the speed of rotation, hence the observed magnitude of such a field drops with increased distance from the object. Consequently, an object crossing it experiences acceleration as it nears the source object, hence the concept of warping of space-time and acceleration due to gravity. Continue reading “Gravity and the standard model”